什么是反函数,举例说明!

一、复合函数

定义:设函数 z = f ( y ) 定义在数集 B ,函数 y = ψ ( x ) 定义在数集 A ,G 是 A 中使 y = ψ ( x ) ∈ B 的 x 的非空子集 (如图1),即

G = { x ∣ x ∈ A, ψ ( x ) ∈ B } ≠ ∅ 。

对任意的 x ∈ G , 按照对应关系 ψ , 对应唯一一个 y ∈ B ,再按照对应关系 f , 对应唯一一个 z(如图1) ,即 对任意的 x ∈ G 都对应唯一一个 z 。于是在 G 上定义了一个函数 , 表为 f • ψ ,称为函数 y = ψ ( x ) 与 z = f ( y ) 的 复合函数 , 即

( f • ψ) (x) = f [ ψ ( x ) ] , x ∈ G , y 称为中间变数(如图2) 。

注:经常将函数 y = ψ ( x ) 与 z = f ( y ) 的复合函数表为 z = f [ ψ ( x ) ] , x ∈ G 。

复合函数与反函数

图(1)

复合函数与反函数

图(2)

例题1、

复合函数与反函数

例题1图

例题2、(三个函数生成的复合函数 )设 u = √z , z = ln y , y = 2x + 3 , 则 u = √[ ln ( 2x + 3 )] , x ∈ [ -1 , + ∞ ] 。

二、反函数

定义:设函数 y = f ( x ) 在数集 A 有定义。

若 对任意的 x1 , x2 ∈ A ,有 x1 ≠ x2 推出 f ( x 1) ≠ f ( x 2) (或 f ( x 1) = f ( x 2) 推出 x1 = x2 ),则称函数 y = f ( x ) 在数集 A 一一对应 。

定义:设函数 y = f ( x ) 在数集 A 一一对应 ,即对任意的 y ∈ f ( A) 只有唯一一个 x ∈ A ,使 f ( x ) = y ,这是一个由 F ( A ) 到 A 的新的对应关系,称为函数 y = f ( x ) 的反函数 , 表示为

复合函数与反函数

反函数图

定理1、若函数 y = f ( x ) 在数集 A 严格增加 (严格减少),则函数 y = f ( x ) 存在反函数,且反函数 x = f^(-1)( y ) 也严格增加(严格减少)。

反函数的性质:

1、单调函数必有反函数。有反函数的函数不一定是单调函数,例如反比例函数 y = K/x ( K ≠ 0 ) ;

2、奇函数不一定有反函数,例如 y = sin x , y = x – 1/x ;当奇函数存在反函数时,反函数一定是奇函数。

例如反比例函数 y = K/x ( K ≠ 0 ) 的反函数还是 y = K/x ( K ≠ 0 ) 。

3、偶函数不一定没有反函数,例如 y = 1 , x ∈ { 0 } 。

反函数与原函数的关系:

1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域;

2、互为反函数的两个函数的图像关于直线 y = x 对称 ;

3、原函数若是奇函数,则其反函数为奇函数;

4、若函数是单调函数,则一定有反函数,且反函数的单调性与原函数的一致;

5、原函数与反函数的图像若有交点,则交点一定在直线 y = x 上或关于直线 y = x 对称出现 。

原函数 y = f ( x ) 与 反函数 y = f^(-1)( x ) 的图像关于直线 y = x 对称

复合函数与反函数

对称图(1)

幂函数中原函数与反函数的图像关于直线 y = x 对称

复合函数与反函数

(2)

指数函数和对数函数互为反函数,图像关于直线 y = x 对称

复合函数与反函数

指数函数与对数函数图(1)

复合函数与反函数

指数函数与对数函数图(2)

复合函数与反函数

指数函数与对数函数图(3)

例题3、

复合函数与反函数

例题3图

欢迎关注头条号“尚老师数学”!

 

本文链接:https://www.zhantian9.com/58085.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2000000@qq.com 举报,一经查实,本站将立刻删除。